Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Comput Biol Med ; 140: 105084, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-2158639

ABSTRACT

The outbreak of a new coronavirus (SARS-CoV-2) was first identified in Wuhan, People's Republic of China, in 2019, which has led to a severe, life-threatening form of pneumonia (COVID-19). Research scientists all around the world have been trying to find small molecule drugs to treat COVID-19. In the present study, a conserved macrodomain, ADP Ribose phosphatase (ADRP), of a critical non-structural protein (Nsp3) in all coronaviruses was probed using large-scale Molecular Dynamics (MD) simulations to identify novel inhibitors. In our virtual screening workflow, the recently-solved X-ray complex structure, 6W6Y, with a substrate-mimics was used to screen 17 million ZINC15 compounds using drug property filters and Glide docking scores. The top twenty output compounds each underwent 200 ns MD simulations (i.e. 20 × 200 ns) to validate their individual stability as potential inhibitors. Eight out of the twenty compounds showed stable binding modes in the MD simulations, as well as favorable drug properties from our predctions. Therefore, our computational data suggest that the resulting top eight out of twenty compounds could potentially be novel inhibitors to ADRP of SARS-CoV-2.

2.
Chem Phys Lett ; 799: 139638, 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-1797021

ABSTRACT

The binding of the active form of Remdesivir (RTP) to RNA-dependent RNA Polymerase (RdRp) of SARS-CoV-2 was studied using molecular dynamics simulation. The RTP maintained the interactions observed in the experimental cryo-EM structure. Next, we designed new analogues of RTP, which not only binds to the RNA primer strand in a similar pose as that of RTP, but also binds more strongly than RTP does as predicted by MM-PBSA binding energy. This suggest that these analogues might be able to covalently link to the primer strand as RTP, but their 3' modification would terminate the primer strand growth.

3.
Molecules ; 26(17)2021 Aug 28.
Article in English | MEDLINE | ID: covidwho-1374472

ABSTRACT

This study aims to identify and isolate the secondary metabolites of Zingiber officinale using GC-MS, preparative TLC, and LC-MS/MS methods, to evaluate the inhibitory potency on SARS-CoV-2 3 chymotrypsin-like protease enzyme, as well as to study the molecular interaction and stability by using docking and molecular dynamics simulations. GC-MS analysis suggested for the isolation of terpenoids compounds as major compounds on methanol extract of pseudostems and rhizomes. Isolation and LC-MS/MS analysis identified 5-hydro-7, 8, 2'-trimethoxyflavanone (9), (E)-hexadecyl-ferulate (1), isocyperol (2), N-isobutyl-(2E,4E)-octadecadienamide (3), and nootkatone (4) from the rhizome extract, as well as from the leaves extract with the absence of 9. Three known steroid compounds, i.e., spinasterone (7), spinasterol (8), and 24-methylcholesta-7-en-3ß-on (6), were further identified from the pseudostem extract. Molecular docking showed that steroids compounds 7, 8, and 6 have lower predictive binding energies (MMGBSA) than other metabolites with binding energy of -87.91, -78.11, and -68.80 kcal/mole, respectively. Further characterization on the single isolated compound by NMR showed that 6 was identified and possessed 75% inhibitory activity on SARS-CoV-2 3CL protease enzyme that was slightly different with the positive control GC376 (77%). MD simulations showed the complex stability with compound 6 during 100 ns simulation time.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Ginger/chemistry , Plant Extracts/pharmacology , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/ultrastructure , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/isolation & purification , Coronavirus Protease Inhibitors/therapeutic use , Crystallography, X-Ray , Enzyme Assays , Gas Chromatography-Mass Spectrometry , Humans , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Structure-Activity Relationship , Sulfonic Acids/pharmacology
4.
Comput Biol Med ; 129: 104156, 2021 02.
Article in English | MEDLINE | ID: covidwho-943010

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) is a key enzyme which regulates the viral replication of SARS-CoV-2. Remdesivir (RDV) is clinically used drug which targets RdRp, however its mechanism of action remains elusive. This study aims to find out the binding dynamics of active Remdesivir-triphosphate (RDV-TP) to RdRp by means of molecular dynamics (MD) simulation. We built a homology model of RdRp along with RNA and manganese ion using RdRp hepatitis C virus and recent SARS-CoV-2 structures. We determined that the model was stable during the 500 ns MD simulations. We then employed the model to study the binding of RDV-TP to RdRp during three independent 500 ns MD simulations. It was revealed that the interactions of protein and template-primer RNA were dominated by salt bridge interactions with phosphate groups of RNA, while interactions with base pairs of template-primer RNA were minimal. The binding of RDV-TP showed that the position of phosphate groups was at the entry of the NTP channel and it was stabilized by the interactions with K551, R553, and K621, while the adenosine group on RDV-TP was pairing with U2 of the template strand. The manganese ion was located close to D618, D760, and D761, and helps in stabilization of the phosphate groups of RDV-TP. Further we identified three hits from the natural product database that pose similar to RDV-TP while having lower binding energies than that of RDV-TP, and that SN00359915 had binding free energy about three times lower than that of RDV-TP.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , Adenosine Monophosphate/metabolism , Alanine/metabolism , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Conformation , RNA-Dependent RNA Polymerase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL